International Journal of Scientific & Engineering Research, Volume 9, Issue 1, January-2018

ISSN 2229-5518

688

Simultaneous Hypothesis Testing for Parameters
of Spline Truncated Nonparametric Regression

for Longitudinal Data

Rafael Lumban Toruan', Vita Ratnasart, I Nyoman Budiantara®

Abstract— Inmultivariable regression, response variables canhave a particular pattern of relationships with predictor variables one of which
has an unknown pattern of curve form. The nonparametric regression approach is an appropriate approach for the case. One of the
nonparametric regression approaches is the spline truncated, which has the advantage of knot points. With the point of knots, the resulting
model will follow the form of changes in data behavior patterns. Changes in data behavior patterns if observed over and over can provide
more complete information about the dynamics of changes in the behavioral patterns of the data. Data obtained from the repeated observation
of each object at different time intervals is called longitudinal data. Longitudinal data is data from observations and measurement of the same
individual at certain time periods, which is different from cross se ction data where the data from each individual is observed only once. Ina
statistical analysis, in addition to using descriptive statistics, it is also necessary to conduct an inferential statistical analysis because it is
very important to do, one of them is testing the simultaneous hypothesis of the model parameters to determine whether the parameter is
significant to the model. In this paper conducted a study of simultaneous hypothesis testing of parameters on spline trunca ted nonparametric
regression model especially on longitudinal data. Based on the result of the simultaneous hypothesis testing of parameters on spline
truncated nonparametric regression mode], it is found that the distribution of test model statistic follows the distribution F with degrees of

freedom ((np+nrp), ntp-(np+nrp)).

Index Terms — nonparametric regression, spline truncated, longitudinal data, simultaneous hypothesis testing.

1 INTRODUCTION

egression analysis is a statistical method who determine re-

lationship pattern between predictor variables and re-

sponse variable. The aim of this regression is to estimed
parameters who matched with the regression curved. The esti-
mation of regression curve form is used to explain the relation-
ship between response variables and predictor variables. One
of the most commonly used approaches is the parametric re-
gression approach, where the assumption underlying this ap-
proach is that the form of the regression curve can be repre-
sented by a set of certain parameters or can be described in a
particular pattern [1]. When the model of regression curve is
unknown, then nonparametric regression analysis is preferred
to used [2]. One of the nonparametric regression approaches is
the spline truncated, which has the advantage of knot points.
With the point of knots, the resulting model will follow the
form of changes in data behavior patterns [3].

Changes in data behavior patterns if observed over and over
can provide more complete information about the dynamics of
changes in the behavioral patterns of the data. Data obtained
from the repeated observation of each object at different time in-
tervals is called longitudinal data. Research by nonparametric
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approach on longitudinal data is mostly done in the field of
health, but also can be applied to the others, including the social
and economic [4]. Longitudinal data is data from observations
and measurement of the same individual at certain time periods,
which is different from cross section data where the data from
each individual is observed only once [5]. In a statistical analysis,
in addition to using descriptive statistics, it is also necessary to
conduct an inferential statistical analysis because it is very im-
portant to do, one of them is testing the simultaneous hypothesis
of the model parameters to determine whether the parameter is
significant to the model.

Simultaneous hypotesis testing is one of the most important
parts of statistical inference. Simultaneous hypotesis testing for
parameters of nonparametric regression can be used to find out
if predictor variables that significantly influence response vari-
ables. From a statistical test will be obtained a region of rejection
that will be used to generate a decision for the results of simul-
taneous hypothesis testing. If p-value is less then «, then at least
one of the predictor variable has significant effect on the re-
sponse variable. In this research will study about simultaneous
hypothesis testing in spline truncated nonparametric regression
for longitudinal data.

2 LITERATURE REVIEW

2.1 Nonparametric Regression Model

The regression curve between predictor and response varia-
bles is not always known. If forced to use parametric regression
then the resulting model is not in accordance with the form of
relationship pattern which will ultimately produce a large error.
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Nonparametric regression is one of the approaches used to de-
termine the relationship pattern between predictor variables
and the unknown response of the regression curve or no com-
plete past information about the shape of the data pattern [3].

Some approaches in nonparametric regression include:
spline, kernel, fourier series, wavelet, etc. Spline is an approach
often used in nonparametric regression. Somethings to consider
informing spline regression is to determine the order of the
model, the number of knots, and the location of the knot point
[6]. Spline regression has a functional basis which in its parame-
ter optimization process uses optimization. Spline regression
has the advantage of adjusting data patterns that change sharply
with knots. In general, nonparametric regression model:

vi=f@)+e, i=12,..,n, (1)

with y; is the i -th response variable, while the function f(z;) is
the regression curve, with z; as the predictor variable and ¢; is
the random error assumed to be independent normal distribu-
tion with mean zero and variance o2 [3].

2.2 Spline Truncated Nonparametric Regression for
Longitudinal Data
Spline Truncated nonparametric regression model on longi-
tudinal data can be written in the form:

yij =f(z;)+&;,i=12..,mj=12.,t )
with
m
f(Zij) = Yot quZ?,- + X1 Vzi(Zij - Kli)+ 5
where n is the number of observed objects and t is the amount
of time of the object being observed, while ¥, quziqj is poly-

nomial components dan ),j_; yu-(zi = K“-):n is truncated trun-
cated with:

_om (i — k)", zij = ke
(Zl] kll)_,_ _{ 0, 2 < kli

Equation (1) is a nonparametric regression spline-truncated
form in longitudinal data with one nonparametric predictor
variable. If the nonparametric spline truncated regression in the
longitudinal data consists of one response variable with a non-
parametric predictor variable of g, then the spline truncated re-
gression curve for longitudinal data with m = 1 can be ex-
pressed in terms of the following equation

f(zy) =Zh-y (Z;"ﬂﬁqi 25+ 21 vy (e — kli):r_l)-
So, equation (2) becomes

m
Viy = Zhoy (S By 2 + Zica vy (Zgne — ku)} ) + £, ®)

the & consist of the parameter E dan 7. Estimator of § is ob-
tained by completing the WLS optimization as follows:

in {(7-T(Z ZIKDE)'WG — T(Z ZIK])S)}, )

m
3 er(m+rnp

Withmatrix W is given by

W, 0 .. 0
w=|0 W2 0]
0 0w,

2.3 Generalized Cross Validation (GCV)

One of the most commonly used methods of choosing an
optimum knot point is the Generalized Cross Validation (GCV).
Compared with other methods, such as Cross Validation (CV)
and Unbiased Risk (UBR) or Generalized Maximum Likelihood
(GML) methods, GCV has theoretically optimal asymptotic
properties [7]. GCV method also has advantages that do not
require knowledge of the population variance 0> and GCV
invariance method of transformation [7].

GCV function is given by

n 'Y (v — 9)?

Gev(k) = :
(k) [l—n_lt7’ace(A(I~c'))]2

with GCV being a vector containing GCV values from knot points.
Optimum knot points is obtained through optimization

n Y (v — 9i)?
..... [1- n—ltrace(z‘l(l?))]2 ‘
with k& = (kq, ks, ...

,k,.). A[k] get from equation
y = Alkly

3 METHODOLOGY RESEARCH

3.1 Source of Data

This research used secondary data from Gross Regional
Domestic Product (GRDP) by industry classification and
Regency/Municipality in Papua Province in 2011-2016, and
Human Development Index (HDI) in 2011-2016. The
observation units are 29 Regency/Municipality in Papua
Province.

3.2 Variables Research

The research variables used is response variables (Y) and
two predictor variables (Z; dan Z,).

TABLE 1.

withi=12,..,n;j =12,...,t. RESEARCH VARIABLES

In longitudinal data, parameter estimates were obtained us- Variabels Explanaflon
. . . . Y Economic Growth Rate
ing Weighted Least Square (WLS) to overcome correlations in the Z Mean Y £ Schooling (MYS
same observational subjects. Then write equation (3) in matrix 1 ~ean Tears of SChoolng ( )
notation as follows Zy Life Expectancy - eg

§=T(ZZIK)5 + ¢ )
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4 RESULTS AND DISCUSSION

41 Estimation of Spline Truncated Regression

Nonparametric Parameters on Longitudinal Data
. Based on equation (4) and (5) we get estimator of parameter
B

= {1 — (@'wz) Z"'WZ(Fk) (Z(IE)TWZ(IE))_IZ(IE)TWZ}_
(Z'WZ) "Wy — (Z"WZ)*Z"WZ(k) (Z(IE)TWZ(IE))
z(k) ' wy

B =u(k)y

with U(k) = AZ"WZ)13Z"W — __

2'wz(F) (2(R) wa(R))
and we get

5= {1 - (Z(E)Twz(k))_l (z(k)'wz) szz(l?)}
(@ wat®)) 2wy - (25 wa(®))

z(k)' wiz'wz) -z’ wy

(i)' w)

-1

7 =V(k)y
with V(E) = A (2(8)' wz(k)) " {2()'w -
Z(IE)TWZ(ZTWZ)—lzTW}
After get estimator § dan ¥, then the spline truncated regres-

sion model on the longitudinal data can be written to be:
y=12+ 2(k)7
—20(0)7 + Z(B)V(E)7
= (2u(k) + Z(k)V(k)) 7
= (M(k) +N(k)) 7
=T(z%(k))$
with:
M(k) = Zu(k)
N(R) = Z(R)V(R)

4.2 Hypothesis Testing Formulation
Give a spline truncated nonparametric regression model on
longitudinal data in matrix form as follows:

&
&

(21

&n
ntx1 .
response ¥ is a sized vector nt x 1. § is a vector that contains

sized parameters § and 7 sized (np + nrp)x 1, and £ is error
vector. If é~N(0,0?W), so 3~N (T (2,2(k) ) §, a*W),

when

0 o*w; 0 0
0= 6 dano2w=| O oW, 0
0 0 0 o2W,

the simultaneous hypothesis formulation used to test the signif-
icance of non-parametric spline truncated regression model pa-
rameters on longitudinal data is:

Hy:6=0
H;: at least one component inside 6 # 0
where
ﬁll! "'!ﬁml! "'!ﬁlp! "'!ﬁmp '
BlZ' 'BmZI 'BZp! ""ﬁmp
S = Bln' rﬁmn’ "'!.Bnpr !ﬁmp |
Y11 0 Ve ""Y1pr !yrp
Yino - Vo '"fynpt '"lyrp
parameter space below H (Q) as follows:
Q= {8 = (Bu Bz e B V1, T2y e ), 07 W} )
whereas, the parameter space below H,(w) as follows:
w={(8,0*W),§ =0} = {a?W} 8

To get the parameter estimation below H(()) pada data longi-
tudinal one way is to use WLS method. Based on the equation
(6), then the model under space H(Q) is:

7=T(22(k))d,+
so, the equation as follows:
e=5-T(22(Kk))5,
Next is give the equation of the sum of squares error with the
weighting matrix W as follows:
FW e = (7 -T(z2(k)) SQ)' Wil (7-T(z2(k))60)
- (y' ~8,T (2, z(E))) Wil (5-T(2.2(k)) 6,)
= 5'Wg'ly - 601" (2. 2(k) ) W'y — 7' W ' T (2, Z(k)) 6o +
8o 1 (2.2(k)) Wa T (2,2(k)) 6q

§=T (Z, Z(k)) 6+¢ (6) = FWgly — ZSQ'T’ (Z, Z(E))W([l)? +
with & 'y ~ -1 ~ ~
5 ) 8 1 (2.2(k)) Wq'T (Z,2(k)) 6,
5= T=1z & =P =Q(6
y=1. A= ( )]ntx (np+nrp) /9 ~ | 5 = Q(%q)
37' 14 (np+nrp) x 1
nex From equation (7) will be partially derived from 8, to ob-
tain an estimate of the parameters below space , as follows:
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2(0Ga) _ a(y’wgly—z?s‘n'T’(z,z(k))w51y+?in'T’(z,z(k))wng(z,z(k))’Sn)
a3 GICI)
= 21" (2,2(k)) W5y + 21" (2, 2(k) ) W5 T (Z,2(k) ) &,
if the result of the partial derivative is equal to zero, then
an equation of parameter estimator below space ( is as fol-
lows:

—21"(2,2(k) ) W5y + 2T’ (Z,2(k) ) W' T (2. 2(k) ) 6, = 0

~ - ~ -1 ~

5, = (T’ (z.2(k))wa'T(z, Z(k))) T (2,2(k)) W3'y

If the likelihood function is given for the parameter space Q) as
follows:

L(80, W) = H? SO
=[1~, 7 e‘z(yt

21T|Wm| 2 ,
= (2n|Wy|) ze —5(7-1(22(0))50) W5 (7-T(2.2(k))30)
= (2n|W,|)2
37" Wa'y-280 1" (2.2(Rk))Wq ' 9+30 1" (2.2(R) )Wq ' 1(22(%) )50 €

T(Z Z(k))Sm) wal (7-Ti(2.2(K))30)

then, if the equation (9) lowered against Wy, the estimator equa-
tion will be obtained for Wy, as follows:

o-r(te)fe) - W)
it (5~ T(2.2(F))8a) = 4 and (5 - T(2,2(F)) 59) —yy

then substituting the equation (10) into equation (9) then the

maximum value of the likelihood function becomes:

2 _J L ONITN
maxL (8o, Wy ) = (27| Wo|) e =@ A1)
by following the operating properties of that matrix A’(A")™ =
[ dan A™'A = [, then equation (11) become:
max L (gﬂ,WQ) = (2n|Wﬂ|)_%e_5
The next step is to get the parameter estimate below Hy(w)
by using the Function methods Multiplier Lagrange (LM), be-

cause there are conditions (constraints). Given LM function as
follows:

W, = 1(2.2(k))3q)

F(8,,68)=V(8,) +26'(8,) (12)
where:
V() = (7 -T(22(0)8,) Wa' (5 - T(z.2(K)6,)  (13)

with condition (8,,). So, equation (13) will be described as fol-
lows:

V(8.) = (7= T(2:2(0)) 8.) We* (7 - T(2.2(0))5.)

='Wy - 8, T (2,2(k) )Wo'y — 7' W' T (2. 2(K) ) 8., +
8o T (2.2(k) )Wo' (2,2(k)),
= y'W5'y — 28, T (Z,2(k) ) W55 + 8, T (2, 2(k) ) W,!
T(z2(k))5, (14)

Furthermore, by substituting equation (14) into equation (12),
we obtain the following equation:

F(8,,0) = §'W3'y — 26, T’ (z Z(IE)) W1y +
8,1 (2.2(k) )Wo' T(2,2(k)) 6, +20'B,)  (15)

From equation (15) will be derived partially to &, to obtain
an estimate of the parameter under space w, which is as follows:

8 (F(5,.6))
9(8.)

= —21'(2,2(k) ) W;'y + 21" (2,2(k) ) W5*

T(z,2(k))4., + 26 (16)
if equation (16) is equal to zero, then the equation becomes:
—21"(2,2(k)) W55 + 21" (2,2(k) ) W' T (2, 2(k) ) 6., + 26 = 0

T'(z, z(k)) Wo'T(2,2(k)) 6, = T (2.2(k) ) W55 - 6
so, get 6 as follows:
8. = (T'(z 2(F)) W' (2,2 )) (
(z z(k)) (z ))_ T
2(1)))

(z z(k)))

then, if equation (15) is lowered to 6, then the equation will be
obtained:

'(z.2(k)) W55 - 6)

(z2(k)) Wiy -

17)

(FGuwb) =

e - 20, (18)
if equation (18) is equal to zero, then it will be:

5,=0 (19)

then equation (19) is substituted into equation (17) to obtain the
value 0 as follows:

0= (v (2 2@)werr (12(8) o
(T’(Z z(k)) W51 (z, Z(k))) 0 =4

0 = ((T (z.2(k)) Wzt (z, Z(k))) ) 59
6 =T (z2(k)) W5'T(2,2(k)) 8,
so, equation (17) becomes:

2 2 -1 ~
b, =8 ( "(z.2(k))woT (2, Z(k))) T (2.2(k))

W;'T (2,2(k)) bq
If the likelihood function is given below the parameter space w
as follows:

L(aw' w) H =1 )

I, o2 (F-Ti(22(0))B.1) Wil (9:-Ti(2:2())5.s1)

Lo Wl V2 ,

= (2n|W,, ) be 20 T(22(0)50) Wo' (7-1(2:2(K)B.)
= (2n|W,, )
. _l(y'wu—,ly—z'Sm'T’(z,z(}}))wg,ly+'5m'T’(z 2(%)) Wi T(22(R))3. )
log (8, W,,) = —Zlog(2m|W,,|) — 3 (7' W'y -
26,7 (2,2(k)) W'y +38,'T'(2, z(k)) w;'T(2,%(k))$,)

1)

then if equation (21) is partially derived W,,, the estimator equa-
tion will be obtained for W,, as follows:

(20)
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W, = (y—T(Z,z(k))Em)’(y—T(z 2(k))3.) @)

it (7-7(22(k))8,)=8 and (5-T(22(K))5,) =B,
then by substituting equation (22) into equation (20) then the
maximum value of the likelihood functlon becomes:

ma:jle (gw,Ww) = (27T|W |) Ze 2 (5'(8%8)" B) (23)
by following the operating properties of that matrix B'(B)™" =
[ dan B™'B =, then equation (23) becomes:

max L (gw,Ww) = (27I|Ww|)_ge_§

4.3 Likelihood Ratio for Test Statistic

n o n _n
= L@) _ (2u|W,|) ze 2 <|Wm|> 2

Mz, z(k), == wm ==
( ( ) y) L(ﬂ) (27T|WQ|)_;E_; |W_Q|

n

_ ((y—T(z,z(Tc))?w):(y—T(z,z(Tc))ﬁw)>_2
(y—T(z,z(k))ﬁn) (y—T(z,z(fc))ﬁn)

Then do the translation of the numerator by considering G to

=)L) (- (eae))

T(2,2(k))6,) into G,

(24)

then substituting (—T (Z, Z(lz)) 59 +
then it will be:

G=(7-T(22())5) (5-T(22(k)) ) +
P(8a—5.)+ (60— 5.) @+ (80~
§w)' T (2.2(k)) T (2.2(k)) (60 - b.,)

the component of the second and third segments in equation
(25) then be described = (37 —

T(2.2(8)) ) T(z.2(k)) Q=T (z2(k))(5-

(Z Z(k)) 5 ) y distributing §Q as follows:

-

(25)

will

and

=1 (z2(k))y

-1 (2z.2(k)) T (2.2(k)) (T’ (z.2(k))w;T(z, Z(k)))
(v (220)wz)

=1(22(k))y -1 (22(k))5 =

then the equation G will be substituted to the numerator seg-
ment in equation (24) as follows:

Az 2(k)y) =

( (y—T(z,z(l‘c))aﬂ) (5- T(ZZ(R))TS )
<1+§ﬂ ((T'(Z-Z(k))wle(z,z(;;))) ) §n>

(5-1(22(8))50) (7-1(22(k) )30)

1

Ny En’((T’(Zz ) )W lt( zz(k) 2
B

(y—T(zz(k))sn) (7-1(z2(®))3q)

_n
- My
Lo

Based on the equation (26), we can find the test statistic of
the hypothesis Hy: § = 0 against H,: there is at least one param-
eter component inside § # 0 with process as follows:

(26)

2

<k

V> k*
s0, it can be stated that k* is a test statistic, where

(L %_ (ntp — (np + nrp))
k= ((k) 1) (np + nrp)

4.4 Distribution of Testing Statistics

Based on equation (26) we obtain an equation denoted by
Q as below:

~1(z2(k)) (1 (2 2(k))w;'T(z z(k T'(2,2(k)) W5y | M _ §“’((T’(Zrl(fc))walT(Z.z(k)))_l)_1%
( ( ))(~ (2.2(0)) w3t (22(0))) (1 (2.2(8)) y)) Q== o -
Z2le The next step is to get the distribution of the test statistic,
(k)

=T (z 2(k)) - 7'W,'T(z, z(k))
( "(z2(k))wa'T(z, Z(k))) T (2.2(k)) T(2.2(k))
=51(2.2(k)-5T(22(k)) =0

and

Q=T (zz(k))

(9

then what needs to be done is to describe the equation M; and
M, in equation (27). The following is a translation process for
the equations My, is:

=8 (7 @) wor(220)) ) b
p (Z, Z(E)) (T’ (Z, Z(IE)) WiiT (Z,Z(IE)))_
T (Z,2(F)) Wa'y

From equation (28), if:

(28)

- 7(z.2(F)) (T’ (z.2(F)) w5'T (2, Z(k))) (1" (z.2(R)) w;,ly)> A=T1(z2(Fk)) (T' (z.2(k)) wa'T (Z'Z(TC)))_I T (2.2(k)) Wy
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And it will be proven that matrix A is symmetrical and idem-
potent. Matrix A is symmetrical if A’ = A. The proof is:
AI

= (T (z2(k)) (T' (z.2(k)) wg'T(z, z(k)))_1 T (2. 2(k)) wgl)’
=T(22(k)) (T’ (z2(k))wa'T(z, Z(E)))_l T (z,2(k) ) Wg?

= A (proven) (29)
and,
A2

- (T (z2(k)) (T’ (z.2(k))wa'T(z, Z(k))) T (2, 2(k)) Wq )2
=T(z%(k)) (T’ (z.2(k)) wa T (z,2(k) )
T(z2(k)) (T' (z.2(k)) wa'T (z,z(k))) T (2,2(k) ) W5t
=1(z2(k)) (T’ (z2(k)) wa'T(z, Z(E)))_l T (2, 2(k)) wq*

= A (proven) (30)
From equations (29) and (30), it has been proven that the ma-
trix A is symmetric and idempotent then M, also symmetrical

and idempotent, so it can be stated that:
My 2
o2 ~A(r,n' an/20?)
then want to get the value r; dan @' Afi/262. Because matrix A is
symmetric and idempotent then r; = rank(A) = tr(A).
tr(A)

=tr (T (z2(k)) (T’ (z 2(k))wg'T(z, Z(E))>_1 T (2,2(k)) wgl)
1t B=T(z(k)) (T’ (z.2(k)) wa'T (z,z(/l"c)))_1 and C=

T (2,2(k) ) W3, ttr(A) = tr(BC) = tr(CB), so,

z Z(k) Wolx

tr(A)

= tr (T’ (2.200) Wit (z.2(0)) (v (2 2(0)) w31 (2 Z(E)»_l)
= tr(l(np+nrp) )
= (np + nrp)

So, r; = rank(A) = tr(A) = (np + nrp).

Next will looking for value from i’ Afi/26? as follows:
aAL=(T (Z 2(%))3,) Wa'T (2,2(%))4,
=5, T'(2,2(k)) Wa'T (2,2(K)) 4,
=T (z.2(k)) WatT (2, 2(k)) 6o - S 1 (z.2(k))
W't (2,2(k)) b,
so, it Cal(l) be stated that:

Mi .2
o2 X(mp+nrp)
The next stage is to describe the segment M, as follows:

M, = (5 -T(2.2(R) ) (5 - T(2.2(R)) )
_ (y' —b, T (z,z(l%))) (7-T(z2(R))é0)

o T (22(R)) + 80 T (2.2(k)) T(2,2(K) ) 80
ol

: z'%(k)) wgt (T’ (z.2(k)) wa't(z, Z(E)))_l T (Z, Z(IE))] j

= j'By
From equation (31) can be specified if:
B

=1-T(z.2(k)) W5? (T’ (z.2(k)) w5t (z, Z(fc)))_l T (2,2(k))

then it will be proven that B symmetrical and idempotent ma-
trix. Matrix B symmetric if B’ = B, and here is the translation.

B':<I—

T(z2(k))
=1

-T(z2(k)) wg

= B (proven)
dan
B2

_ (1
- T(z.2(k)) wg? (T’ (z.2(k))wg'T(z, Z(k)))_lT’ (Z,Z(l%)))
=1-T(2,2(k)) Wy? (T’ (z 2(k)) wa'T(z, Z(E)))_l T (2,2(k))

= B (proven)
so, it proved that B is idempotent matrix. Because M, is sym-
metrical and idempotent, then it can be stated that:

@31

wg! ( (z.2(k)) wa'T(z, z(k))) 1T’(Z,Z(E))>,

(T’ (z.2(k)) wa'T(z, Z(k))) 1T’(Z' 2(k))

My 2

o2~ A(r,n'an/20%)

Next will find the value for r, and i’ Afi/26?. Because B adalah
symmetrical and idempotent matrix, then r, = rank(B) =
tr(B).

T (Z, z(;})) (T’ (z, z(l"c)) wo'T (Z' Z(’;)))_l

tr(B) = tr - (Z,Z(f())wél
T (z.2(k) ) Wa'T (2 2(k))
- (T’ (z.2(k)) wa'T(z, z(fc)))_1
= tr(lngp) = tr (npnrp) )

= ntp — (np + nrp)

so, it is obtained that:
r, = rank(B) = tr(B) = ntp — (np + nrp)
and then the value will be searched from 'Bji/26? as follows:

f'B

Z%Z'T' (z2(k)) (T (z.2(k))8) - 51 (z,2(k)) (T (2 2(k))$)
- 20?2
so, it C_ar? be stated that:

oz ~X( (ntp—(np+nrp))
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AB

=T(z 2(k) (T’ (z.2(k)) wq'T(z, Z(k))) T (2,2(k)) Wq' x

-1 (z.2(k)) Wy (T’ (z.2(k)) wa'T(z, Z(k)))_l T (2,2(Fk))
=T(z%(k)) <T’ (z.2(k)) wg'T(z, z(fc))) T (z z(k))wgt +
-T (z,z(z;))( (z.2(k)) Wa'T (2,2(R) )
T(z,2(k)) Wg ( "(z.2(k)) wa'T(Z z( )))_ "(z.2(k))
(

(zz(k)) Wy

=T(z%(k)) (T’ (z.2(k)) wa T (z,2(k) )
-T(2.%(k)) (T’ z,2(k)) Wg'T (Z,z(k))) T (2,2(k)) Wgt

=0
because AB = 0, then M; and M, independent. From some
elaboration of the above equation, the following results are
obtained:

1.

2. X(ntp (np+nrp))
3. M1 and M, independently

z Z(k) wﬂ1 +

2
72 ~X(mp+nrp)
Mz

so, based on Rencher (2007) which states that if u is )((Zp), vis
)((Zq), also u and v independent, then:

u/p
V=17q o
V= My/(ptnrp)
M,/ (ntp—(np+nrp)) ((np+nrp)ntp—(np+nrp))
with
M,

=5'T(z2(k)) (T’ (z.2(k)) wa'T(z, Z(E)))_l T (2,2(k)) W'y

M;

:5]’|:I

-7 (2.2(0)) Wi (17 (2. 2(R)) Wi T (2 Z(l?f)))_1 T (z, Z(’?))] y

4.5 Rejection Area of Hypothesis Null

Rejection area A < k, where A < k < 1, and k is a constant, so:
~ (w)
Mz, z(k),y)=—=<<k
Based on statistic test, then the critical area for the test Hy: §=
0, dan H;: there is at least one parameter component inside § #
0is
V= {(Zijl,zijz, "'lZijp); V>k* }

If given the level of trust a, then:

a = P(Reject Hy|H, True)

with
_ M,/ (np + nrp)
M, /(ntp — (np + nrp))

NF((np+nrp),ntp—(np+nrp))

so, critical areas to resist H, provided if the test statistic V
(F calculated) greater than k*(F table).

5 CONCLUSION
Based on the description of analysis and discussion in this
study, it can be drawn some conclusions as follows:
a. The estimation of spline truncated nonparametric regres-
sion parameters on the parameter space below Q is

bo = (T’ (z2(k))wz'T(z, Z(E))>_1 T (2,2(k)) Wg'y
and the parameter estimate under space w is
by =8¢ - (T’ (zz(k))wi'T(z, Z(k)))
T (2,2(k) )Wo' T (2,2(k) ) b,

b. Test statistics obtained:

V> k*
so, it can be stated that k* is a test statistic, where

P ((1)% _ 1) (n — (np + nrp))
k (np + nrp)
c. The distribution of the test statistic obtained follows the
distribution F((np4nrp)ntp—(np+nrp))

d. The rejection area H, is V = {(zijl,zijz, ...,zl-]-p); V>k* } If

given a confidence level a = re-
jeCted if V(Fcalculated) > k*(F tabel)
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